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Abstract:

In [1] we showed that the error in the finite-element solution has two parts,
namely, the local-error and the pollution-error and in [2] we gave methods for
estimating and controlling the pollution-error in any region of interest. In this
paper we will show that the control of the pollution-error is essential in order to
guarantee that the derivatives obtained from local recoveries have higher accuracy
than the derivatives computed directly from the finite-element solution and that
this control must be more stringent than the one needed to guarantee the reliability
of local a-posteriori error estimation. We give an algorithm for controlling the
local and the pollution-error simultaneously, in any region of interest. We show
that, when one is interested in obtaining high accuracy only in some parts of the
domain, the proposed algorithm gives meshes which are much more economical
than the ones obtained from the classical adaptive algorithms which control the
global energy-norm of the error.




1 Introduction

Let u,, be the finite element solution of the Laplacian in the domain {} computed
using a mesh T}, and let us assume that we are interested in the error e, = u —u,
in a mesh-patch w* C Q, where u denotes the exact solution. In [1] we showed that

A (1)

where V& is the local-error, V" is the pollution-error and &" C ) consists of the
mesh- )Patch w" together with a few surrounding mesh-layers. The precxse definition
of V¥, i = 1, 2 will be given in Section 2 below. The local-error V“’ is practi-
cally the error in the finite-element solution of the Laplacian in oh w1th D1r1ch1et
boundary-conditions equal to u on the boundary of &*. The pollution-error V“’ is
practically the exact solution of the Laplacian with Dirichlet boundary-condltlons
equal to (u — u;) on the boundary of &".

We will now give an example which illustrates the above definitions. Let us con-

sider the L-shaped domain shown in Fig. 1a with boundary-conditions correspond-

ing to the exact solution u(r,d) = rf sin ( ) We computed the finite-element

solutlon using the uniform mesh of quadratlc triangles shown in Fig. la. We let
= (0.375,0.625)% and computed V V“’ usmg the definitions given in Section

2 In Fig. 1b we give the graphs VV - 8, VV2 s, where s is the unit-vector along

A, A;. We note that the local-error VV{- s oscillates around zero whereas the

pollution-error VV - s is almost constant in w”.

Let & (W) denote a local-averaging applied to the vector-field W. For example,
(W) may be constructed by employing local least-squares smoothing as in the
‘superconvergent patch-recovery’ proposed in [3-4] (see Section 4, below). By the
construction of &, we have (c; W, + o, W,) = ,6(W,) + 2,6 (W) and thus

§(Vuy) = 6(Vu) = 5(Ve,) = 6(Vu) - 5(V') - 6(VI)  (1.2)
Further, it can be shown that
(V) 0,  F(VIE) =V (1.3)
and hence
&(Vu) — 5(Vu,) = VV& (1.4a)
From the asymptotic analysis
16(Vu) — Vu| << |6(Vu) — V| (1.4b)
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and hence
6(Vu) = Vu, = Ve, (1.4¢)
which implies
&(Vu,) — Vu, = VI (1.4d)
For example, from Fig. 1b we can see that
(&(Vuh) - Vuh) -8 R VVl‘Z’h- s

Thus, &, = &(Vu,) — Vu,, which is often used as an error-indicator, estimates
only the local-error, namely e, = 'VV1
In [5] we have shown that

|6(Vu) - Vu |(2) < 0.20max vV |(z), @erCoh (1.5)

where 0.20 is an empirical constant which was estimated from the numerical re-
sults in [5] (these results were obtained for large classes of grids of triangles and
quadrilaterals). Eq. (1.5) was established under condltlons which guarantee that
the pollution error vanishes identically, i.e. VV3”" = 0. In general, we have

&(Vu,) — Vun 6(Vu) — Vu— V& (1.6)
and thus

#(Vu,) = Vul(®) < 16(Tv) - Vul(@) + VY |(@)
(1.7)
< 0.20 max |V |(2) + max |V V" |(=)

for any & € 7 C wh. Hence, m order to control the error in the recovered-gradient
we must control maleV“’ |(z) relative to 0.20 maxIVV“’ |(z). Thus we must

design the mesh such that

max]VV‘:’hl(a:) < % (O.QOn;g_r)dVVl‘:’hK:c)) (1.8)
for some tolerance s% 100% In the numerical examples we will show that,

in general, if (1.8) is not enforced by proper design of the mesh the accuracy of
the recovered-derivatives is practically the same as the accuracy of the derivatives
computed directly from the finite-element solution.

The goals of this paper are:




1. To show that, in practical computations, the pollution-error can be large
relative to the local-error, in regions of interest, and, if this is the case, there
is no gain in the accuracy from local recoveries.

2. To construct adaptive methods which guarantee the accuracy of the recovered-
derivatives in a region of interest.

Remark 1.1. In [2] we showed that in order to obtain reliable error-estimators
for the energy-norm in a patch of elements one must control the magnitude of
the pollution-error relative to the local-error in the patch. Here we show that in
order to guarantee that the derivatives, computed using a local recovery, are of
higher pointwise accuracy than the derivatives computed directly from the finite-
element solution one needs to employ more stringent control of the pollution than
the control needed to ensure the local quality of the energy error-estimators over
a mesh-patch.

Following this Introduction we give notations related to the model problem
and define the pollution-error and its a-posteriori estimate. We give an algorithm
for the adaptive control of the pollution-error relative to the local-error in any
region of interest. We then give numerical examples which demonstrate that the
recovered derivatives have higher accuracy than the derivatives computed directly
from the finite-element solution only if the pollution-error is controlled relative to
the local-error.

2 Definition and a-posteriori estimation of the
pollution-error

Let © C R? denote a polygonal domain with boundary 9 = T' = FpUTy

where T', is the Dirichlet and 'y is the Neumann-boundary and I'p NT'y = @.

We will consider the mixed boundary-value problem for the Laplacian which, in
variational form, reads:

Find u € H}D = {u € Hl(ﬂ)l u=0on I‘D} such that
Bg(u,v) := /QVu - Vv = - fv VveHp, (2.1)

If I'p =@, it is assumed that f satisfies the consistency condition / f=0.1In
r

this case the solution u is determined uniquely up to an arbitrary constant.
For the finite element method we partition the domain  into square (or quadri-
lateral) elements with straight edges 7 defined by the mesh 7}, and let

SP(Q) = {vh € HL ()| wal, € S}(r) Ve Th} (2.2)

' 3




(For the quadrilateral elements we employ the bilinear mapping to define the shape-
functions over a given element.) Here S;(7) denotes the finite-element space over
r and p is the degree of the elements. We employed the biquadratic polynomial

space (p = 2)
S2(%): {P | P(zy,2,) = Y ;7 m%} (2.3)
05:::;:52
The finite element approximation of the solution of (2.1) satisfies:
Find u;, € Shr, = SH(Q) N HE () such that
Ba(wnw) = [ fon V€8, (24)

Let € be an edge and J, denote the jump of the normal derivative of u), on €,
defined by:

( (Vuh o Vu, ro.,:) ‘n,, €Z o0
Jeo =9 2(f—VuhT t)-ns, eCly (2.5)
uO ) € Q;FD

Here n,, 7;, and 7,,, denote the unit-normal and the elements associated with the

edge €, as shown in Flg. 2. The error e, := u — u, satisfies the residual-equation:

Find e, € Hf such that

alen,v)= S F.(v) VwveH: (2.6)

T€T,

where F, denotes the element-residual functional given by

F.(v) /vAuhI + = Z ‘/.v,]E , v € Hp (2.7)

cCBT

Let us assume that the element-residuals have been modified in the following
way (for the construction see [2] and [7]; see also [8-9])

FROW)=F,(0)+ 3 / o (2.8)

eCOTNE,

such that




FER(v)= 0 Y ve Sir) (2.9)

Here ¢ is the correction for the edge ¢ and the element 7 and E,,, is the set of

interior edges. For any interior edge ¢ it is assumed that 07 = —67 .- We then
have
Bgolep,v)= 3 FPR(v) VweHp (2.10)
: T€T,

Let w" be a patch of elements and let &P denote a patch which consists of wh
and a few mesh-layers around it (in the results below &P consists of wh and two
mesh-layers around it). Let V& e H}D be the local-error in w" defined by

Bo(V¥,v)= S FER(v)  Vwe Hp (2.11)
TETh
rg&h

Then the pollution-error in W is V& :=¢, — V&". In [2] we have proven that

W (5)= ¥ Bile, G —w,) (212)

Oz, €T,

TZGh

where w, is the best-approximation of G,(-i) in 7 by biquadratic polynomials and
G,(z), 2 € 0 is the function which satisfies

0é

~AGP = -5 (®) in 0 (2.13a)
G = 0 on Tp (2.13b)

0 @) _

-a—n(J,- = 0 on Ty (2.13¢)

. 6 o .
Here z = 1 or 2 and 5——(5:) denotes the z;-derivative of Dirac’s delta centered at
T

#. Eq. (2.13a) is understood in the sense of the theory of distributions.
vy
Jz;
employing the following steps. Assuming that & is a nodal point of the mesh, we
compute the finite element approximation éﬁ) € SZ_FD of the solution of (2.13) by

solving

An a-posteriori estimate of I (:E)l, based on (2.12), can be constructed by




Bo(GS),v) = %(v(fi: tmh)—o(®)  VveSh (2.14a)

when n; is the unit-vector in the i-th direction. We assume that & + n,his also a
nodal point of the mesh (this can be always achieved with obvious modifications of

the approximation of G,(i) )- The function é’,(i) is the finite-element approximation

of
GO(@) = 2 (G(z) - 09)(&)) (2.14B)

where G is the classical Green’s function which satisfies (2.13) with the right-
hand side of (2.13a) replaced by §(Z). Then, we get (see [2])

BV“’

:t:)l (; |B,(¢,,G® — )|) (1+Ch) (2.14¢)
rgwh

where @, is the best-approximation of G’,(i) by quadratic polynomials in 7.
We define the pollution-indicators for the i-th derivative

pip (@) = | B, (&(ua), & (GI2)] (2.150)

(@) = IVe()ll, IVe(GRIl, = n,(un, (GF)  (2.15h)
where é_(u;) and €, G resp. n,(u;) and 7, G®))) are the error-indicator func-
h h t,h

tions (resp. element error-indicators) corresponding to u, and G, n» respectively.
We then define the pollution-estimate for the i-th derivative in w"

MP @)= 3 B=), =12, k=12 (2.15¢)

TET
‘rz&h
The above quantities can be computed by employing the error-indicator func-
tions obtained from the local problems:

0
Find é, € H' (1) such that
0
B,(é,,v)=FE%0w) VYwve H'(r) (2.16a)
where

H'()={ver| o =0} (2.160)
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In the computations we approximate &, using biquartic polynomials. The func-
tion €, (uy) (resp. é,(GS,’;,))) is the exact solution of (2.16) for the residual FF?

corresponding to u; (resp. Gf’;?) In {2] we have shown that
oh
{%] < MP(2)(1 +Ch) (2.17)

provided that the element error-indicators are accurate, modulo the pollution-error.
From the numerical studies given in [2] we have seen that M(&) has essentially

the same properties as M,(-2)(§:).

Remark 2.1. In [2] we showe:l that the above a-posteriori estimates of the pollution

give effectivity indices -i\-/t‘—/-’i:(—i), k =1, 2 close to one. In the numerical studies
5 @)

given below we employed only M,(-l) (in the discussion below the exponent will be

omitted).

Remark 2.2. For a complete discussion of the underlying mathematical framework
for the pollution problem see [6].

3 Adaptive algorithms

We will now give two adaptive algorithms which can be employed to control
the local accuracy of the solution. The first is the classical feedback-algorithm for
the control of the global energy-norm (e.g. [10]; see also [11] and [12] for a differ-
ent approach) while the second is a new feedback-algorithm for the simultaneous
control of the local and the pollution-error only in a mesh-patch w*.

3.1 Globally-adaptive grid

Let t% be a given tolerance and let us assume that the goal is to construct a
mesh for which

Vel < %] Vullg (3.1)
where ||W||2 ='/Q w.-W.
We will construct such a mesh by employing the following algorithm:

1. Let T}, = T? and go to 3.

2. For each element 7 € T}, do:




2.1. Compute 7, := [|VE,]|,
2.2. If n, > v maz n,, subdivide 7.

3. Compute the finite element solution on T}, and &, = Z n2.
T€T),

4. Check if
Eq < t%||Vullg

If not go to 2, otherwise stop.

Here TP is the initial mesh, 7, denotes the element error-indicator, &g is an estimate
for ||Ve,|lq and 0 < 4 < 1 is a parameter. In the computations below, we took

v = 0.9.
Remark 8.1. Tt should be noted that the above algorithm does not allow for the

direct control of the local accuracy in a region of interest. The local accuracy can be
controlled indirectly through the value of the tolerance for the global energy-norm.

Remark 8.2. The above algorithm produces meshes which are nearly-equilibrated
in the energy-norm. In [1] we showed that, for nearly-equilibrated meshes, the
pollution-error is (indirectly) controlled relative to the local-error.

Remark 3.3. We underline that the constructed meshes are dependent on Tj) which
reflects the domain of interest (i.e. the domain of interest should coincide exactly
with one element or the union of several elements from the coarsest mesh).

3.2 Global/local adaptive grid

Let us assume that the goal of the computation is to achieve a prescribed
t%-accuracy in the relative-error for the recovered-gradient in the mesh-patch wh,

namely
6(Vuy) — Vul(2)

)
G

<t%, z e uw (3.2)

where 52, is an average-value of the square of the gradient of the exact-solution

over wh,
] 1
Gon = / |V ul? (3.3)
o] Vdor

From (1.7) we see that this goal can be achieved by designing the grid such that

10




~h
_ UVl

fwh : p% (34)
wh
and then enforcing the condition
IV llun < 6%V [l (3.)

Remark 8.4. Note that (3.4) and (3.5) were obtained from (1.7) and (1.8), respec-
tively by replacing the maximum norm by the average mean-square value i.e. by
assuming that

HV‘/i&h I Iw"

3.6
o] (3.6)

max |VVZ| ~ C
TET

The grid which controls, simultaneously, the local- and the pollution-error in

w" is constructed using the following algorithm:

1. Let T}, = T? and set flag = 0.
2. Compute the finite element solution on T,.

3. Check if

n < t% (3.7)

If yes and flag = 0 go to step 5.
If yes and flag = 1 go to step 7.

4. For each element 7 € T}:

4.1 Compute 7, := ||Vé, ||,
42 Ifq,. 2~ max 7,, subdivide 7.
€%

rgwo

Set flag = 0 and go to step 2.

5. Compute the pollution-estimate for the gradient

'rGTh
rzdro

Mw=kazma+%» (3.8)

Check if

11




Mp S ERE n (3.9)

If yes set flag = 1 and go to step 2.

6. For each element 7 € T}, 7 € &™:

6.1 Compute the pollution-indicator for the gradient in 7, p, = 1/ pi, +
6.2 Ifp, 2% max f,, subdivide 7.
€

rz:bh
Compute the finite element solution on the new mesh and go to step 5.
7. Stop.

In the numerical examples below we employed ¥ = 0.9. The grid constructed as
described above will be called global/local adaptive grid with respect to wh.

Remark 3.5. Note that the above algorithm gives us direct control of the accuracy
of the finite element solution in the mesh-patch w”.

Remark 3.6. The global/local adaptive meshes are obtained by enforcing, simul-
taneously, (3.7) and (3.9).
Remark 8.7. The meshes constructed by the feedback algorithm in steps 4, 5 are

called pollution-adaptive with respect to w™.

Remark 3.8. We underline that, for the global/local adaptive grids, the error in
the mesh-patch of interest may be controlled to be as small as desired while, at
the same time, the error in the global energy-norm may be very large.

Remark 3.9. A different approach for constructing global/local adaptive grids is
given in [13]. '

4 The quality of the recovered derivatives in the
interior of the mesh

Practical computations involve polygonal domains with several reentrant cor-
ners and points where the type of boundary-conditions changes from Dirichlet to
Neumann. In such computations the effect of the pollution can be very significant.
Let us consider a boundary-value problem with two-singular points as our model
example. Let Q be the polygonal domain ABCDEFGH shown in Fig. 3 and let the

exact solution

12



u(zy,2;) = ré sin (19—30—) + r?r sin (g%)

whererg = \/(ml — (z¢)1)? + (23 — (2¢),)? and similarly for rp, while J¢ (resp. ¥p)
is the angle measured in the clockwise (resp. counter-clockwise) direction from
BC (resp. FG). Welet A = (-1,1), B = (-1,0), C = (0,0), D = (0,-1),
E = (2,-1), F = (2,0), G = (3,0), H = (3,1). We considered the mesh-patches
wh and wh which consist of the part of the mesh which covers the fixed subdomains
Q, = (0.375,0.625) x (—0.625,—0.375) and 1y = (2.375,2.625) x (0.375,0.625),
respectively. (In the examples below we will use an initial mesh TP which includes
elements which cover exactly ©, and Q,. This mesh is different than the initial
mesh employed to arrive to the uniform mesh depicted in Fig. 3.) The goal of the
computations given below, is to control the accuracy of the finite-element solution
(in the subdomains Q, and 2,) below a given tolerance and, at the same time, to
obtain better accuracy, than the accuracy achieved by the finite-element solution
(in these subdomains), by employing the recovered derivatives.

In the numerical results below we will utilize the following quantities to re-
port the accuracy achieved by the gradient of the finite-element solution and the
recovered-gradient in a mesh-patch wh.

1. The pointwise and the mazimum relative-error in the gradient of the finite-

element solution in wh:
|Vu — Vu,|(x
pr(z) = —— ) , Ppur =maxp(e) (4.1)
O'Wh TEW
2. The pointwise and the mazimum relative-error in the recovered-gradient in wh:
Vu—-o(Vu
m(z) = | — (Vu,) , 7 n = max () - (4.2)
Uwh :L‘Ewh

3. The pointwise effectivity-indezx for the error-estimator based on the recovered-
gradient in wh:

_ |6(Vuy) — Vu,|(z)

K@) = e ) (4.3)

In the numerical examples below, we employed the ‘superconvergent patch-
recovery’ (given in [3-5]) to construct the recovered derivatives 6(Vuy,). In partic-
ular, for the biquadratic elements employed in the examples we let:

13




#(Vu)|, = Sox(Vu)l, Nx+ T (5, (Vun)], + o, (Tw)], ) Ny
(4.4)

+1(o%, (Vup], + 0%, (Vu)|, + 0%, (V)| + %, (Vu)],) Nz

where X, Y, Z denote a vertex, mid-side node and the centroid of the quadrilateral
element 7 and 0% (Vu,,) is computed as the solution of the following minimization
problem over the patch of elements connected to the vertex X:

Find 0% (Vu,) € P, such that

nir:np(d}(Vuh) — Vuh)"’(;ce) < "’:"Zmp(a_ — Vuh)z(mg) YVoeP, (4.5)

Here {a,}7°3™" are the sampling-points which are taken to be the mapped (2 X 2)

Gauss-Legendre points in the quadrilaterals connected to the vertex X. For the
details about the implementation see [3-5].

4.1 The quality of the recovered derivatives in uniform
grids

First, let us assume that we would like to employ a uniform mesh of biquadratic
elements. (Note that many practical computations are performed using quasi-
uniform meshes of elements of quadratic degree.) We employed uniform meshes of

mesh-size h = 1 and L with total number of degrees of freedom 1633 and 6337,

. . . 1 :
respectively. For the uniform-mesh with h = g Ve obtained

Py =34.62%, = 36.09%

pn =19.38%, m_n = 16.47%

and for the uniform-mesh with h = —

16
P =16.39%, . = 16.67%

“
pur = 12.30%, T = 11.79%
w2 w2
We observe the following:

14




1. Even for the relatively refined mesh with A = L we cannot obtain 5%

accuracy in the recovered-gradient in any of the subdomains.

2. The error in the recovered derivatives is practically the same as the error in
the derivatives of the finite-element solution in both subdomains.

3. The pointwise effectivity index for the estimator based on recovered deriva-
tives in the interior of the subdomains is practically equal to zero.

4.2 The quality of the recovered derivatives for grids re-
fined only in a subdomain of interest

An approach which is often used in engineering analysis of complex structures
is to refine the mesh locally only in regions of interest (see for example [14-16]).
To show that this approach is meaningless, in general, let us refine the mesh in the
neighborhood of subdomain 2, as shown in Fig. 4 (the local uniform mesh-size in

1
, is equal to —62) Using this mesh we obtained for w! = {T et ’ T C Ql}
pp = 84.53%, mp = 96.17%

while the estimated relative-error was

8(4, .
—3L  =0.00036%
]]Vu”w;,

The above results can be explained as follows: As we have already discussed in
the Introduction we have

#(Vu,) — 6(Vu) ~ VVZ*

Since we are refining the mesh only inside §; the gradient of the pollution-error
VV2“~’h is practically constant in the interior of the subdomain and hence, in general,
we cannot increase the accuracy of the recovered derivatives by refining the mesh,
locally, only in the subdomain &"*. Further, we have

&(Vu,) — Vu, ~ VV"

and thus, as the subdomain is refined, the estimated error converges to zero while
the true error remains practically constant. For additional results and a complete
discussion of the performance of estimators in the interior of locally refined meshes

see [6].
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4.3 The quality of the recovered derivatives for globally-
adaptive grids

In [6] we showed that when the mesh is nearly-equilibrated in the energy-norm
(i.e. globally-adaptive) the pollution-error is controlled relative to the local-error
and the element error-indicators have effectivity-indices close to one everywhere
in the mesh. Here we would like to demonstrate that the quality of the derivatives
computed by local-recoveries is more sensitive to the pollution-error, than the quality
of the local element error-indicators.

We employed the feedback algorithm with 4 = 0.9 and constructed a sequence
of adaptive grids. The convergence of the global energy-norm versus the number
of degrees of freedom for this sequence is given in Fig. 5d. We see that the rate
of convergence for the sequence of adaptively-constructed meshes is N%, where N
is the number of degrees of freedom and p is the degree of the elements (p = 2).
In Figs. 6a-6g we show seven meshes from the sequence of grids. These grids
correspond to point T} through T; in the graph of Fig. 5. In Fig. 6d (resp. Fig. 6e)
we give the globally-adaptive grid T, (resp. Ts) which achieves tolerance 4.77%
(resp. 0.93%) in the global energy-norm. For the mesh T, (resp. T;) we have
pur = 28.2%, T = 22.4% (resp. Pur = 8.48%, T = 2.73%). In Fig. Ta
(resp. Fig. Tb) we give the regions of 2.5%, 5% and 10% relative-error (shown dark-
gray, gray, light-gray, respectively) for the gradient of the finite element solution
(resp. the recovered gradient) in the subdomain wh, for the globally-adaptive mesh
T, shown in Fig. 6d. Note that there is significant gain in the 10%-regions for the
recovered gradient compared with the gradient computed directly from the finite-
element solution. In Fig. 8a (resp. Fig. 8b) we give the regions of 0.5%, 1% and
2% relative-error in the gradient of the finite element solution (resp. the recovered
gradient) in the subdomain w? for the globally-adaptive mesh T; shown in Fig. 6e.
Note that there is a significant gain in the 2% regions for the recovered gradient
compared with the gradient computed directly from the finite-element solution. In
Fig. 9 we give the regions of 1%, 2%, 4% relative-error in the recovered gradient
in the subdomain w! for the globally-adaptive mesh T,. These regions will be
compared with the regions given in the next Section for a global/local adaptive
grid with respect to w?.

The above results can be explained as follows: By employing a mesh which is
nearly-equilibrated in the energy-norm we are (indirectly) controlling the ratio

max | V'V |(2)

____<c¢
max |V V" |(2) ©

where 7 is any element and &" is a mesh-patch which consists of 7 and a few
mesh-layers around it. Hence, from (1.7) we get
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|6(Vuy) = Vu | (&) (020 + C)max |[VVi'|(=), z€T

Thus if C is small we see that the error in the recovered gradient is less than the
local error. Nevertheless, the accuracy of the recovered gradient may not be as
high as predicted by the analysis in [1] because C may be comparable to 0.20.

In summary, we observe the following:

1. When a globally-adaptive grid is employed, with sufficiently small tolerance
for the global energy-norm, the local accuracy of the recovered gradient is
better than the local accuracy of the finite-element solution.

2. Depending on the data and the subdomain of interest, it may be very expen-
sive to employ a globally adaptive grid to achieve high local accuracy in a
subdomain.

4.4 The quality of the recovered derivatives in global/local
adaptive grids

We now describe numerical studies on the quality of recovered derivatives in
global/local adaptive grids which are obtained using the algorithm described in
Section 3.2. Here we will show that:

(i) In general, we can obtain better accuracy in the recovered derivatives with
fewer degrees of freedom, by employing a global/local adaptive grid with
respect to the mesh-patch of interest instead of a globally-adaptive grid.

(ii) The quality of the recovered derivatives, computed from a global/local adap-
tive grid, can be enhanced by controlling the pollution-error to a sufficiently
small tolerance.

1

‘ 8

in w? and h = 1 in the rest of the domain. In Fig. 5 we give the convergence of the

global energy-norm versus the number of degrees of freedom for the sequence of
pollution-adaptive meshes with respect to the mesh-patch wh. We see that for the
global/local adaptive mesh-sequence the error, measured in the global energy-norm,
is practically constant i.e. it does not decrease with the refinement of the mesh.

This sequence was obtained by fixing the mesh in w? and by using the feedback

algorithm which employs the pollution-indicators to refine the mesh outside o In

We used the global/local adaptive algorithm on an initial mesh which has A =

Fig. 10a we show the mesh from the sequence which achieves l—l—‘—7—ﬁ|l—— = 9.18%
Uy, oh
1
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and = 19.13%. For this mesh, which has 1053 degrees of freedom, p, p =

8 wh
29. 95%, 7 = 10. 32%. In Fig. 10b we show the regions of the relative-error in

the gradlent of the finite element solution (i.e. p,) and in Fig. 10c we show the
regions of relative-error in the recovered gradient (i.e. 7;) in the subdomain wh
shown shaded in Fig. 10a. By comparing Figs. 10b and 10c, we observe that there
is a significant gain in the 10%-relative-error regions when the recovered gradient
is used instead of the gradient computed directly from the finite-element solution.

We have, as before,

. _ max [V}’ () i ,
|6(Vu,)—Vu | (2) < {0.20+ max |VV;**|(e), zeTCuw
maXIVVl *(z)/ =€

and since

ah w
max |V (@) 9Vl Moy
max [V (@) VWL,

by choosing the mesh such that A:w? < 20% we have ensured higher-order accuracy
wh
of &(Vu,) in wf. 1
By comparing the results given in Fig. 10c with those given for the globally-
adaptive mesh in Fig. 7b we observe that the desired tolerance (for the recovered
derivative in the subdomain) can be achieved by using a global/local adaptive
mesh which has a fourth of the degrees of freedom of a globally-adaptive mesh
which achieves the same accuracy in the subdomain (although the global energy-
norm of the error for the global/local adaptive mesh is large). In Fig. 11la (resp
Fig. 11b) we show the regions in wh where the pointwise effectivity-index & is
between 0.8 and 1.2 for the globally-adaptive mesh (resp. global/local adaptive
mesh with respect to w?) shown in Fig. 6d (resp. Fig. 10). We observe that for
both grids the effectivity-index is in the range [0.8, 1.2} in large portions of wh, In
the case of the global/local adaptive grid we have 0.8 < k < 1.2 almost over the
entire subdomain.
In order to demonstrate the sensitivity of the recovered gradient to the pollution-
error we give, in Figs. 12a and 12b, the regions of relative- error in the recov-
ered derivative for the pollution-adaptive meshes with respect to wh which achieve

L — 44.60% and 11.77% respectively. By comparing Fig. 10c, Fig. 12a and

Ep

Wi
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Fig. 12b we observe that when the pollution error in w? is controlled to a smaller

tolerance (relative to the local-error in w?) there is a substantial gain in the 5%-
relative-error regions for the recovered gradient.
wy

IVl

mesh-size h = T in wh. In Figs. 13a and 13b we show the meshes (from the

1
sequence of pollution-adaptive meshes with respect to wh, where h = Ig) for

In order to achieve the goal < 5% we employed an initial grid with

M
which < 7.76% and “i 4.47%, respectively. In Figs. 14a, 14b we show

En E n
regions of relative-error in the recovered gradient 7, for the mesh of Fig. 13a,
13b, respectively. As observed earlier, when the pollution error is controlled to a
smaller tolerance, there is a significant gain in the 2%-relative-error regions for the
recovered-gradient.
Finally, we show that in general we cannot predict a-priori how to refine the
mesh in order to control the pollution-error in a given subdomain. We considered

the mesh-patch w?, meshed with uniform-grid with A = T and constructed the

sequence of pollution-adaptive grids with respect to w}. In Figs. 15a and 15b we

give the meshes from this sequence which give 3 o A 5.79% and z e 1.73%,
wh wh

respectively. We note that these meshes are reﬁnecfseveral times near the corner at
C which is far from the subdomain w! while only a few refinements are employed
near the corner at F' (which is much closer to the subdomain than C). In Figs. 16a
and 16b we give the regions of the relative-error in the recovered gradient in wh for
the meshes shown in Figs. 15a and 15b, respectively. By comparing Fig. 16a and
Fig. 9 we note that there is a significant gain in the 4%-relative-error regions when a
global/local adaptive mesh is employed instead of a globally-adaptive mesh. Note
that the global/local adaptive meshes are much more graded near the singular-

points than the globally-adaptive meshes shown in Figs. 6a-6g.

In summary, we observe the following:

1. By controlling the pollution-error to a sufficiently low tolerance in a subdo-
main of interest we can obtain full gain in the local accuracy of the recovered
gradient in that subdomain.

2. When one is interested in obtaining high-accuracy only in a small subdomain,
global/local adaptive meshes with respect to the region of interest are, in
general, much more economical than globally-adaptive meshes.

3. In general, we cannot say a-priori how to refine the mesh in order to control
the pollution-error in a region of interest.
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5 Conclusions

We studied the effect of the pollution-error on the pointwise quality of the
recovered derivatives in the interior of the mesh. We observed the following:

1. When quasi-uniform meshes, or meshes which are locally refined only in the
subdomain, are employed it may not be possible to achieve better accuracy
(than the finite element solution) by using a local recovery in a subdomain
of interest.

2. When a globally-adaptive mesh is employed, the local quality of the recovery
can be ensured only for a sufficiently low tolerance for the global energy-
norm. Such meshes may be very expensive when one is interested to achieve

good accuracy only in a local region.

3. By employing global/local adaptive meshes we can control the pollution-error
(to within any prescribed tolerance) in any patch of elements of interest and
we can obtain higher-order accuracy (relative to the finite element solution)

by employing a local recovery.

4. For the boundary-value problems which occur in practical computations
(which include many corner points) desired local accuracies can be achieved
with much fewer degrees of freedom by employing global/local-adaptive meshes
instead of globally-adaptive meshes.
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List of Figures

Fig. 1. An example which illustrates the definition of the local and the pollution-
error. (a) The L-shaped domain covered by a uniform mesh of quadratic triangles.

. . /29 .
The exact solution u(r,dJ) = ri sin (—) was employed to impose non-homogeneous

Neumann boundary-condition on A,A;, A3A,, A A;, A;A;. Homogeneous Dirich-
let boundary-conditions were applied on AlA%I, AgA,. (b) The directional deriva-
tives of the local and the pollution-error, VV#" - s and VV2" - s and the estimated
error &, - 8 along A, A;. Note that the estimated-error practically coincides with
the local-error VV#" - s.

Fig. 2. Definition of 7;, and 7,,, for an interior edge with respect to the unit-
normal n assigned to the edge.

Fig. 3. The domain of the model problem meshed with a uniform mesh of bi-

quadratic elements with mesh-size o = =. The subdomains Q,, 2, are shown
shaded gray. Note that for this mesh Pui = 34.62%, T = 36.09%, Puz = 19.38%,
TW’Q‘ = 16.47%.

Fig. 4. A mesh of biquadratic elements locally refined in the neighborhood of
the subdomain w?. The local mesh-size in the neighborhood of the subdomain is

1
h= e Note that for this mesh p , = 84.53% and T = 96.17%.

Fig. 5. Convergence of the global energy-norm of the error versus the number of
degrees of freedom for the sequences of globally adaptive grids and of pollution-

adaptive grids with respect to w} (for h = 3 in wh). Note that the error for the

globally-adaptive grids converges quadratically. For the pollution-adaptive grids
the global energy-norm of the error is very large for all the meshes in the sequence.

Fig. 6. The sequence of globally-adaptive meshes of biquadratic elements gener-
ated by the feedback algorithm. Mesh corresponding to: (a) Ty; (b) Ty; (c) Ts;
(d) Ty; (e) Ty; (f) Tg; (g) T;. The points T; through 7., are shown in the conver-
gence graph of Fig. 5.

Fig. 7. The regions of relative-error in the subdomain w} for the globally-adaptive
mesh shown in Fig. 6d.

(a) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for p,, the relative-
error in the gradient of the finite element solution;

(b) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for =, the relative-
error in the recovered gradient.

Note that there is a significant gain in the 10%-regions when the recovered gradient
is employed instead of the gradient of the finite-element solution.

Fig. 8. The regions of relative-error in the subdomain w? for the globally-adaptive
mesh shown in Fig. Ge.
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(a) The regions of 0.5%, 1%, 2% (dark gray, gray, light gray) for py, the relative-
error in the gradient of the finite element solution;

(b) The regions of 0.5%, 1%, 2% (dark gray, gray, light gray) for 7, the relative-
error in the recovered gradient.

Note that there is a significant gain in the 2%-regions when the recovered gradient
is employed instead of the gradient of the finite-element solution.

Fig. 9. The regions of 1%, 2%, 4% (dark gray, gray, light gray) for the relative-
error in the recovered gradient in the subdomain w? for the globally-adaptive mesh

shown in Fig. 6d.

Fig. 10. The mesh and the corresponding regions of relative-error obtained using
the global/local adaptive algorithm:

£
(a) The mesh of biquadratic elements which achieves ————-”V:?H = 9.18% and
rllup

M
“! — 19.13%. The subdomain w? is shown shaded gray.

Uh
(b)lThe regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the relative-error
in the gradient of the finite element solution pj,.
(c) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the relative-error
in the recovered gradient 7.
Note that the 10%-regions for m, are significantly larger than those given in Fig. 7b
for the global-adaptive mesh. Note also that the mesh around the corner-point at

F is left completely unrefined.

Fig. 11. The pointwise effectivity index for the recovered gradient, k(x). The
regions where 0.8 < x(z) < 1.2 are shown shaded gray for:

(a) The subdomain wh given in Fig. 6d for the globally adaptive mesh;

(b) The subdomain wh given in Fig. 10a for the global /local adaptive mesh with
respect to wh. '

Note that in the case of the global/local adaptive mesh, we have 0.8 < k < 1.2
almost over the entire subdomain.

Fig. 12. The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the
relative-error in the recovered gradient 7, in wf for global/local adaptive meshes
with respect to w® for which the following tolerances were achieved:

(a) =2 = 7.87% and Moy sa60%
a) ————= 1. an = 44, ;
[1Vull, e, ’

W

(b) ——=-2 0.62% and h = 11.77%
—— an = . .
IVull,p T E, °

Note that when the pollution-error in wi was controlled to a smaller tolerance,
there is significant gain in the 5%-relative-error regions.
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Fig. 13. Global/local adaptive meshes of biquadratic elements with respect to wh
achieving the following tolerances:

h h
a) —i— = 2.62% and —2 = 7.76%;
) [T, = 2% g, = TR
b) —i 4.13% and My 4.47%
(b) ||Vuh|| h = b an g » = 4.47%.

Note that the mesh near the corner-poznt F is also refined several times (compared
to the mesh shown in Fig. 10a where the mesh near F is left unrefined).

Fig. 14. The regions of 0.5%, 1%, 2% (dark gray, gray and light gray) for the
relative-error in the recovered gradient m, in w?. The regions are given for the
global-local adaptive meshes shown in: (a) Fig. 13a; (b) Fig. 13b.

Fig. 15. Global/local adaptive meshes of biquadratic elements with respect to wh
achieving the following tolerances:

h h
w2 = 3.98Y d Y2 — 5. .
(a) ”Vuh“wh 3.28% an 5“,;1 5.79%;
h
b) s=—3—=4. d = 1. .
(b) TVl h 00% an g » 1.73%

We note that the mesh is reﬁned several times near the corner at C (which is far
from the subdomain w!) while only a few refinements are employed near the corner
at F (which is much closer to the subdomain than C).

Fig. 16. The regions of relative-error in the recovered gradient in w! for the
global/local adaptive meshes with respect to w} shown in Fig. 15:

(a) The regions for 1%, 2%, 4% (dark gray, gray, light gray) for the mesh shown
in Fig. 15a which has pollution-error of 5.79%;

(b) The regions for 0.25%, 0.3%, 1% (dark gray, gray, light gray) for the mesh
shown in Fig. 14b which has pollution-error of 1.73%.

Note that there is a significant gain in the 1%-relative-error regions when the
pollution-error is controlled to a smaller tolerance.

25




Fig. 1a




q1 *Sigq

SIXY—Q SUO[y S9}eUulpJoo) {Y3}suoT 2Jay
€4°0 €9°0 €G°0

[ S OO 0 W W T U T VAN T NN SN U U N NN N U TN TN T YO T N AN N N N OO S O I |

€80

SOAT}BALISP POI3A003.1

JuIsn Joaxy PpoYeWI}SH vwwwv J

a
~

€A JoIaxy uomnniiod ses=a

TA J0II{ [€e007] ceeeo

(S2TE€0°0 = U) YS9 ULIOJIU() ‘S}ULWIS[Y OT}eIpENY

(€/02)UIS (g/m1

= (0‘1)¥n :uornjog JIe[nsulg
Joaxy uomniod ay3y jo £pnig

PE—
T

G1000°0—

01T000°0—

G0000°0-

00000°0

G0000°0

07T000°0

¢1000°0

JOJIY 9Y) JO 9AT}RALI9( [eUOTI}09JI(




Fig. 2




1 8 |

€691 = 400N




v -Sigq

syly =Jd00N

- Wu | —
e
N H HA
/I” 1 u\\
- 3 ~
\\“ NN
\m N
L. \\ L 3 / AN




g S1q
F\%Eovmmp.« jo soeaafep jo IaqunpN)]H0T

00°9 00°G 00"V 00°€ 00°¢

S T U N U0 Y N U T T T T U T B

00'cl-—

soysoly 2a13depy [e207/18qO[H sseses
soyso]y 2a13depy A[[eqO[H ceeoo

00°01—-

00°8—

00°9—

|—|llllIIll|Illlllll|[lllllllll||IllllIll

00°v—

(11211)901




eg ‘31 q

6vS =J0dN




q9 814

LSTT =JOAN




29 314

L6TT =J0AdN




=

-
-
~

-
-
L 11

68y =dJOAN




6118 =JOAN




J9 ‘Sigq

€687 = JOUN

AN A" A
AN LY ! \
A . W—
N\ /
AN WA ¥
N N /
N ANV
"N
III N
-
II \
294
141 11 e
[
144 H11A1] h
‘T. i
i
10351020
TIHTIHEE 7 S
I e
Ril= Tt
\\
e T L L
e —y AY Y I 4 L
/ — = o
., == =
| S\ L
'} ——¥  — — 4 e
8 N VA A \\
| A
N 4 q
N LH
\\
- L+
]
L
S
|1 nt
A N a
e NN
"N
7 N
7 ———
LY AN AN




L90vs =J0aN




Hle_hll/ilull

=4.77% , FE-error

Regions of 2.5% ,5% ,10%

0.282

0.014 , MAX

MIN =




lle_hil/llall = 4.77 % , ZZ-error
Regions of 2.5% ,5% ,10%
MIN = 0.012 , MAX = 0.224

Fig. 7b




0 0 o o o ® L )
(] (] ) L o @ D@
. |
‘ ‘ ° o!| O ® Q
1 0 ® 6
( ® @
| y
® @6
°
( ® -

lle_hli/llall = 0.93% , FE error
Regions of 0.5% , 1% ,2%

Fig. 8a




C——

e Ry

lle_hil/llall = 0.93% , ZZ-error
Regions of 0.5% ,1% , 2%
MIN = 0.00009 , MAX = 0.027

Fig. 8b




lle_hl/llall = 4.77 % , ZZ-error
Regions of 1.0% ,2% ,4%
MIN = 0.006 , MAX = 0.146
Patch2 -

Fig. 9




BOT "S1g

€501 =J0dN




IV2ll/eta = 19.13% , FE-error
Regions of 2.5% ,5% ,10%
MIN = 0.009 , MAX = 0.299

Fig. 10b




19.13% , Z.Z-error

Regions of 2.5% , 5% ,10%

IIV2Il/eta

0.007 , MAX = 0.103

MIN

Fig. 10c



Fig. 11a




Fig. 11b




T

IV2li/eta = 44.60% , ZZ-error
Regions of 2.5% ,5% ,10%
MIN =0.019 , MAX = 0.241

Fig. 12a




IV2Iil/eta = 11.77 % , Z.Z-exrror
Regions of 2.5% ,5% ,10%
MIN = 0.0004 , MAX = 0.081 :

: Fig. 12b




BgT "Srg

g6el = J0dN




qeT Sy

1981 =J00N

V L Ve =
L z
\ 7 i
\ ql
A
4
-~
// LA
P
N _
\\\“‘
»
it
me
-
™~
1 il
|1 Il N
N
| WA AN //
7 =N N
| N\ AN
L I kY AN AN
[ J i 3 AY AN
7 Y LY AN
1y
111




IV2li/eta =7.76 % , ZZ-error
Regions of 0.5% ,1% ,2%
MIN = 0.000004 , MAX = 0.033

Fig. 14a




IV2ll/eta = 4.48% , Z.Z-error
Regions of 0.5% ,1% ,2%
MIN = 1.44E-7 , MAX = 0.021

Fig. 14b




BST “SIq

L6 =d0aN

N




qsT ‘S q

SvEl =AJ40AN

+ -
|41




IV2ll/eta = 5.79% , ZZ-error
Regions of 1.0% ,2% , 4%
MIN = 0.0003 , MAX = 0.043
Patch 2 .

Fig. 16a




IV2li/eta = 1.73% , ZZ-error
Regions of 0.25% ,0.5% ,1.0%
MIN = 1.33E-7 , MAX = 0.014 :

| - Fig. 16b



The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babuska, Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.




